cfgrib

cfgrib#

本节介绍如何使用 cfgrib 加载 GRIB2 要素场,并使用 cedarkit-maps 绘图。

安装#

使用 conda 安装 cfgrib

conda install -c conda-forge cfgrib

准备#

导入需要的包

import xarray as xr
import pandas as pd
import cfgrib

设置绘图的数据参数,使用 CMA-MESO 2024 年 11 月 14 日 00 时次 024 时效数据。

system_name = "CMA-MESO"
data_type = "cma_meso_3km/grib2/orig"
start_time = pd.to_datetime("2024-11-14 00:00:00")
forecast_time = pd.to_timedelta("24h")

加载数据#

设置 GRIB2 数据文件路径

file_path = '/g3/COMMONDATA/OPER/CEMC/MESO_3KM/Prod-grib/2024111400/ORIG/rmf.hgra.2024111400024.grb2'
file_path
'/g3/COMMONDATA/OPER/CEMC/MESO_3KM/Prod-grib/2024111400/ORIG/rmf.hgra.2024111400024.grb2'

注:可以使用 reki 库查找本地文件路径

Hide code cell source
from reki.data_finder import find_local_file

file_path_use_reki = find_local_file(
    data_type,
    start_time=start_time,
    forecast_time=forecast_time,
)
file_path_use_reki
Hide code cell output
PosixPath('/g3/COMMONDATA/OPER/CEMC/MESO_3KM/Prod-grib/2024111400/ORIG/rmf.hgra.2024111400024.grb2')

使用 cfgrib 加载 2 米温度要素场。

说明:

  1. index="" 表示不生成 cfgrib 的索引文件

  2. filter_by_keys 用于设置筛选要素场的条件,这里选择 shortName 为 2t 的场

ds = xr.open_dataset(
    file_path,
    engine="cfgrib",
    backend_kwargs={
        "filter_by_keys": {
            "shortName": "2t"
        },
        "indexpath": "",
    }
)
t_2m_field = ds["t2m"] - 273.15
t_2m_field
<xarray.DataArray 't2m' (latitude: 1671, longitude: 2501)> Size: 17MB
array([[-19.797974 , -19.870972 , -19.942978 , ..., -20.505981 ,
        -19.986984 , -19.959976 ],
       [ -6.6259766,  -6.7809753,  -6.383972 , ..., -21.558975 ,
        -21.516983 , -20.273972 ],
       [ -6.434967 ,  -6.696991 ,  -5.9329834, ..., -21.054977 ,
        -21.480972 , -20.025986 ],
       ...,
       [ 27.062012 ,  27.073029 ,  27.068024 , ...,  27.54303  ,
         27.550018 ,  27.659027 ],
       [ 27.096008 ,  27.051025 ,  27.068024 , ...,  27.57602  ,
         27.572021 ,  27.66101  ],
       [ 27.044037 ,  27.058014 ,  27.051025 , ...,  27.549011 ,
         27.572021 ,  27.66101  ]], dtype=float32)
Coordinates:
    time               datetime64[ns] 8B ...
    step               timedelta64[ns] 8B ...
    heightAboveGround  float64 8B ...
  * latitude           (latitude) float64 13kB 60.1 60.07 60.04 ... 10.03 10.0
  * longitude          (longitude) float64 20kB 70.0 70.03 70.06 ... 145.0 145.0
    valid_time         datetime64[ns] 8B ...

绘图#

使用 cedarkit-maps 绘制 2 米温度填充图

Hide code cell source
from cedarkit.maps.style import ContourStyle
from cedarkit.maps.chart import Panel
from cedarkit.maps.domains import EastAsiaMapTemplate
from cedarkit.maps.colormap import get_ncl_colormap

t_2m_level = [-24, -20, -16, -12, -8, -4, 0, 4, 8, 12, 16, 20, 24, 28, 32]
color_index = [2, 12, 22, 32, 42, 52, 62, 72, 82, 92, 102, 112, 122, 132, 142, 152]
t_2m_color_map = get_ncl_colormap("BlAqGrYeOrReVi200", index=color_index)
t_2m_style = ContourStyle(
    colors=t_2m_color_map,
    levels=t_2m_level,
    fill=True,
)
domain = EastAsiaMapTemplate()
panel = Panel(domain=domain)
panel.plot(t_2m_field, style=t_2m_style)
domain.set_title(
    panel=panel,
    graph_name="2m Temperature (C)",
    system_name=system_name,
    start_time=start_time,
    forecast_time=forecast_time,
)
domain.add_colorbar(panel=panel, style=t_2m_style)
panel.show()
../../_images/4e41e9f7114a270b91a352d5c9b72a3f11e4ee0abb16e7b5f4451b2b3d81bdca.png